Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_{-\pi / 2}^{\pi / 2} \sin ^4 x \cos ^6 x d x$ is equal to
Options:
Solution:
1522 Upvotes
Verified Answer
The correct answer is:
$\frac{3 \pi}{256}$
$\begin{aligned} & \int_{-\pi / 2}^{\pi / 2} \sin ^4 x \cos ^6 x d x=2 \int_0^{\pi / 2} \sin ^4 x \cos ^6 x d x \\ &=\frac{2 \frac{4+1}{2} ! \frac{6+1}{2} !}{2 \frac{4+6+2}{2} !} \\ &=\frac{\frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi}}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{3 \pi}{256}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.