Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{2}^{3} \frac{d x}{x^{2}+x}=$
MathematicsIndefinite IntegrationMHT CETMHT CET 2020 (12 Oct Shift 2)
Options:
  • A $\log \left(\frac{3}{4}\right)$
  • B $\log \left(\frac{3}{2}\right)$
  • C $\log \left(\frac{9}{8}\right)$
  • D $\log \left(\frac{8}{9}\right)$
Solution:
1331 Upvotes Verified Answer
The correct answer is: $\log \left(\frac{9}{8}\right)$
$\begin{aligned} \mathrm{I} &=\int_{2}^{3} \frac{\mathrm{dx}}{\mathrm{x}^{2}+\mathrm{x}}=\int_{2}^{3} \frac{\mathrm{dx}}{\mathrm{x}(\mathrm{x}+1)} \\ \therefore \mathrm{I} &=\int_{2}^{3}\left[\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{x}+1}\right] \mathrm{dx} \\ &=[\log \mathrm{x}-\log (\mathrm{x}+1)]_{2}^{3}=\left[\log \left(\frac{\mathrm{x}}{\mathrm{x}+1}\right)\right]_{2}^{3} \\ &=\log \left(\frac{3}{4}\right)-\log \left(\frac{2}{3}\right)=\log \left(\frac{3}{4} \times \frac{3}{2}\right)=\log \left(\frac{9}{8}\right) \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.