Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$2 \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)$ is equal to
MathematicsInverse Trigonometric FunctionsTS EAMCETTS EAMCET 2021 (06 Aug Shift 1)
Options:
  • A $\tan ^{-1}\left(\frac{49}{29}\right)$
  • B $\frac{\pi}{2}$
  • C 0
  • D $\frac{\pi}{4}$
Solution:
2237 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{4}$
$\begin{aligned} & 2 \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{2\left(\frac{1}{3}\right)}{1-\left(\frac{1}{9}\right)}\right) +\tan ^{-1}\left(\frac{1}{7}\right)\\ & =\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right) \\ & =\tan ^{-1}\left(\frac{\left(\frac{3}{4}\right)+\left(\frac{1}{7}\right)}{1-\left(\frac{3}{4}\right)\left(\frac{1}{7}\right)}\right)=\tan ^{-1}\left(\frac{25}{25}\right)=\frac{\pi}{4}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.