Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
20 meters wire is available to fence a flower bed in the form of a circular sector. If the flower bed should have the greatest possible surface area, then the radius of the circle is
MathematicsApplication of DerivativesMHT CETMHT CET 2020 (15 Oct Shift 1)
Options:
  • A $2 \mathrm{~m}$
  • B $4 \mathrm{~m}$
  • C $5 \mathrm{~m}$
  • D $10 \mathrm{~m}$
Solution:
2539 Upvotes Verified Answer
The correct answer is: $5 \mathrm{~m}$
Let $\ell$ and $\mathrm{r}$ be as shown in figure.
We have $20=2 r+\ell$
$$
\ell=20-2 \mathrm{r}
$$
Area of flower bed
$$
\begin{array}{l}
A=\frac{1}{2} \times \ell r=\frac{1}{2}(20-2 r) \cdot r \\
A=10 r-r^{2}
\end{array}
$$
$$
\begin{array}{l}
\frac{\mathrm{d} \mathrm{A}}{\mathrm{dr}}=10-2 \mathrm{r} \text { and } \frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dr}^{2}}=-2 < 0 \\
\text { When } \frac{\mathrm{d} \mathrm{A}}{\mathrm{dr}}=0 \Rightarrow 10-2 \mathrm{r}=0 \Rightarrow \mathrm{r}=5
\end{array}
$$
Hence area of flower bed will be maximum when $r=5$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.