Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{\frac{1}{25}}^3 \frac{e^{\frac{3}{x}}}{x^2} d x=$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2023 (18 May Shift 1)
Options:
  • A $-\frac{1}{3}\left(e^{75}-e\right)$
  • B $\frac{1}{3}\left(e^{50}-e^{25}\right)$
  • C $-\frac{1}{3}\left(\mathrm{e}^{50}-\mathrm{e}\right)$
  • D $\frac{1}{3}\left(e^{75}-e\right)$
Solution:
1959 Upvotes Verified Answer
The correct answer is: $\frac{1}{3}\left(e^{75}-e\right)$
Let $I=\int_{\frac{1}{25}}^3 \frac{e^{\frac{3}{x}}}{x^2} d x$
Let $\frac{3}{x}=t$
$\Rightarrow-\frac{3}{x^2} d x=d t \Rightarrow \frac{1}{x^2} d x=-\frac{1}{3} d t$
When $x=3 \Rightarrow t=1$
$\begin{aligned} & x=\frac{1}{25} \Rightarrow t=75 \\ & \therefore I=\int_{75}^1 e^t\left(-\frac{1}{3} d t\right)=-\frac{1}{3}\left[e^t\right]_{75}^1 \\ & =-\frac{1}{3}\left[e-e^{75}\right]\end{aligned}$
$\Rightarrow \quad I=\frac{1}{3}\left[e^{75}-e\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.