Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int 3^{-\log _9 x^2} d x=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2023 (16 May Shift 1)
Options:
  • A $2 \log |x|+C$
  • B $\log |x|+C$
  • C $-\log |\mathrm{x}|+\mathrm{C}$
  • D $-2 \log |x|+C$
Solution:
2456 Upvotes Verified Answer
The correct answer is: $\log |x|+C$
$\int 3^{-\log _9 x^2} d x=\int 3^{\log _9\left(\frac{1}{x^2}\right)} d x$
$=\int\left(\frac{1}{x^2}\right)^{\log _9 3} d x=\int\left(\frac{1}{x^2}\right)^{\frac{1}{2}} d x$
$=\int \frac{1}{x} d x=\log |x|+C$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.