Search any question & find its solution
Question:
Answered & Verified by Expert
$\begin{array}{llll}\text { 3. The sum } & \text { of } & \text { the } & \text { series }\end{array}$ $1+\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}+\quad+\frac{1}{n+1}{ }^{n} C_{n}$ is equal to
Options:
Solution:
2502 Upvotes
Verified Answer
The correct answer is:
$\frac{2^{n+1}-1}{n+1}$
$1+\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}+\quad+\frac{1}{n+1}{ }^{n} C_{n}$
$=\frac{1}{n+1}\left[(n+1)+\frac{(n+1) n}{21}\right.$
$+\frac{(n+1) n(n-1)}{3 !}+(1]$
$=\frac{1}{n+1}\left[^{n+1} C_{1}+{ }^{n+1} C_{2}+\quad+{ }^{n+1} C_{n+1}\right]$
\(=\frac{2^{n+1}-1}{n+1}\)
$=\frac{1}{n+1}\left[(n+1)+\frac{(n+1) n}{21}\right.$
$+\frac{(n+1) n(n-1)}{3 !}+(1]$
$=\frac{1}{n+1}\left[^{n+1} C_{1}+{ }^{n+1} C_{2}+\quad+{ }^{n+1} C_{n+1}\right]$
\(=\frac{2^{n+1}-1}{n+1}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.