Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\left(4 \cos ^2 9^{\circ}-3\right)\left(4 \cos ^2 27^{\circ}-3\right)=
$$
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2022 (06 Jul Shift 2)
Options:
  • A $\sin 9^{\circ}$
  • B $\cos 9^{\circ}$
  • C $\tan 9^{\circ}$
  • D $\cot 9^{\circ}$
Solution:
2319 Upvotes Verified Answer
The correct answer is: $\tan 9^{\circ}$
$\begin{aligned} &\left(4 \cos ^2 9^{\circ}-3\right)\left(4 \cos ^2 27^{\circ}-3\right) \\ &= \frac{1}{\cos 9^{\circ}}\left(4 \cos ^3 9^{\circ}-3 \cos 9^{\circ}\right) \times \frac{1}{\cos 27^{\circ}} \\ &\left(4 \cos ^3 27^{\circ}-3 \cos 27^{\circ}\right) \\ &= \frac{1}{\cos 9^{\circ}}\left(\cos 27^{\circ}\right) \times \frac{1}{\cos 27^{\circ}}\left(\cos 81^{\circ}\right) \\ &= \frac{\cos \left(90^{\circ}-9^{\circ}\right)}{\cos 9^{\circ}}=\frac{\sin 9^{\circ}}{\cos 9^{\circ}}=\tan 9^{\circ}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.