Search any question & find its solution
Question:
Answered & Verified by Expert
$4 \mathrm{~g}$ of an ideal gas $\mathrm{A}$ (molar mass $=\mathrm{M}_{\mathrm{A}}$ ) present in a vessel of a volume $\mathrm{V}$ litre exerted a pressure of $5 \mathrm{~atm}$ at $300 \mathrm{~K}$. When $16 \mathrm{~g}$ of another ideal gas B (molar mass = MB) was introduced into this vessel at the same temperature, its increased to $10 \mathrm{~atm}$. What is the correct relationship between $\mathrm{M}_{\mathrm{A}}$ and $\mathrm{M}_{\mathrm{B}}$ ?
Options:
Solution:
1275 Upvotes
Verified Answer
The correct answer is:
$4 \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}$
$\mathrm{PV}=\mathrm{n} \mathrm{R}$ T (ideal gas equation)
$$
\mathrm{PV}=\frac{\mathrm{wRT}}{\mathrm{M}}
$$
$\therefore \mathrm{M} \alpha \mathrm{w}$ and $\mathrm{M} \alpha \frac{1}{\mathrm{PV}}$
$$
\begin{aligned}
& \therefore \frac{M_A}{M_B}=\frac{w_A}{P_A V} \times \frac{P_B V}{w_B} \\
& \frac{M_A}{M_B}=\frac{4}{5 V} \times \frac{5 V}{16}\left\{P_B=10-5=5\right\} \\
& \therefore \quad 4 M_A=M_B
\end{aligned}
$$
$$
\mathrm{PV}=\frac{\mathrm{wRT}}{\mathrm{M}}
$$
$\therefore \mathrm{M} \alpha \mathrm{w}$ and $\mathrm{M} \alpha \frac{1}{\mathrm{PV}}$
$$
\begin{aligned}
& \therefore \frac{M_A}{M_B}=\frac{w_A}{P_A V} \times \frac{P_B V}{w_B} \\
& \frac{M_A}{M_B}=\frac{4}{5 V} \times \frac{5 V}{16}\left\{P_B=10-5=5\right\} \\
& \therefore \quad 4 M_A=M_B
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.