Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
5 moles of Hydrogen $\left(\gamma=\frac{7}{5}\right)$ initially at S.T.P. are compressed adiabatically so that its temperature becomes $400^{\circ} \mathrm{C}$. The increase in the internal energy of the gas in kilo-joules is
$$
\left(R=8.30 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)
$$
PhysicsThermodynamicsAP EAMCETAP EAMCET 2002
Options:
  • A $21.56$
  • B $41.55$
  • C $65.55$
  • D $80.55$
Solution:
2359 Upvotes Verified Answer
The correct answer is: $41.55$
Initial temperature $T_1=0^{\circ} \mathrm{C}$
Final temperature $T_2=400^{\circ} \mathrm{C}$
Work done
$$
\begin{aligned}
& W=\frac{\mu R}{\gamma-1} \times \Delta t \\
= & \frac{5 \times 8.31}{\frac{7}{5}-1} \times(400-0) \\
= & \frac{5 \times 8.31 \times 400}{2 / 5} \mathrm{~J} \\
= & \frac{5 \times 5 \times 8.31 \times 400}{2} \mathrm{~kJ} \\
= & 41.55 \mathrm{~kJ}
\end{aligned}
$$
For adiabatic process,
Increase in internal energy $=$ work done $=41.55 \mathrm{~kJ}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.