Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{6 x+5}{\sqrt{6+x-2 x^2}} d x=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2017 (25 Apr Shift 2)
Options:
  • A $-3 \sqrt{6+x-2 x^2}+\frac{13}{2 \sqrt{2}} \operatorname{Sin}^{-1}\left(\frac{4 x-1}{7}\right)+c$
  • B $-3 \sqrt{6+x-2 x^2}+\frac{13}{\sqrt{2}} \operatorname{Sinh}^{-1}\left(\frac{4 x-1}{7}\right)+c$
  • C $-3 \sqrt{6+x-2 x^2}+\frac{13}{2 \sqrt{3}} \operatorname{Sinh}^{-1}\left(\frac{4 x+1}{7}\right)+c$
  • D $3 \sqrt{6+x-2 x^2}-\frac{13}{2 \sqrt{2}} \operatorname{Cos}^{-1}\left(\frac{4 x-1}{7}\right)+c$
Solution:
1545 Upvotes Verified Answer
The correct answer is: $-3 \sqrt{6+x-2 x^2}+\frac{13}{2 \sqrt{2}} \operatorname{Sin}^{-1}\left(\frac{4 x-1}{7}\right)+c$
No solution. Refer to answer key.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.