Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{\sqrt{7-6 x-x^2}}$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2021 (25 Aug Shift 2)
Options:
  • A $\sinh ^{-1}\left(\frac{x+3}{4}\right)+c$
  • B $\log \left|\frac{x+3}{4}\right|+c$
  • C $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
  • D $\frac{1}{2} \sin ^{-1}\left(\frac{x+3}{4}\right)+c$
Solution:
1349 Upvotes Verified Answer
The correct answer is: $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
$I=\int \frac{d x}{\sqrt{7-6 x-x^2}}$
$\begin{aligned} I & =\int \frac{d x}{\sqrt{7-6 x-x^2+9-9}} \\ & =\int \frac{d x}{\sqrt{(4)^2-(x+3)^2}}\left\{\because \int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C\right. \\ I & =\sin ^{-1}\left(\frac{x+3}{4}\right)+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.