Search any question & find its solution
Question:
Answered & Verified by Expert
$\int \frac{3 e^x-7 e^{-x}}{7 e^x+3 e^{-x}} d x=K x+L \log \left(e^{-2 x}+\frac{7}{3}\right)+C$
then $K+L=$
Options:
then $K+L=$
Solution:
1827 Upvotes
Verified Answer
The correct answer is:
$\frac{38}{21}$
$\begin{aligned} I & =\int \frac{3 e^x-7 e^{-x}}{7 e^x+3 e^{-x}} d x \\ & =3 \int \frac{e^x-\frac{7}{3} e^{-x}}{7 e^x+3 e^{-x}} d x \\ & =\frac{3}{7} \int \frac{7 e^x-\frac{49}{3} e^{-x}}{7 e^x+3 e^{-x}} d x \\ & =\frac{3}{7} \int \frac{\left(7 e^x+3 e^{-x}\right)-\frac{58}{3} e^{-x}}{7 e^x+3 e^{-x}} d x \\ & =\frac{3}{7} \int d x-\frac{3}{7} \times \frac{58}{3} \int \frac{e^{-x}}{7 e^x+3 e^{-x}} d x\end{aligned}$
$I=\frac{3 x}{7}-\frac{58}{7} \int \frac{e^{-2 x}}{7+3 e^{-2 x}} d x$
Put $t=7+3 e^{-2 x}$
$\Rightarrow \quad d t=-6 e^{-2 x} d x$
$\begin{aligned} & I=\frac{3 x}{7}-\frac{58}{7}\left(-\frac{1}{6}\right) \int \frac{d t}{t} \\ & I=\frac{3 x}{7}+\frac{29}{21} \ln |t|+C \\ & I=\frac{3 x}{7}+\frac{29}{21} \ln \left(7+3 e^{-2 x}\right)+C\end{aligned}$
$\begin{aligned} & \Rightarrow \quad K=3 / 7 \text { and } L=29 / 21 \\ & \Rightarrow K+L=\frac{3}{7}+\frac{29}{21}=\frac{9+29}{21}=\frac{38}{21}\end{aligned}$
$I=\frac{3 x}{7}-\frac{58}{7} \int \frac{e^{-2 x}}{7+3 e^{-2 x}} d x$
Put $t=7+3 e^{-2 x}$
$\Rightarrow \quad d t=-6 e^{-2 x} d x$
$\begin{aligned} & I=\frac{3 x}{7}-\frac{58}{7}\left(-\frac{1}{6}\right) \int \frac{d t}{t} \\ & I=\frac{3 x}{7}+\frac{29}{21} \ln |t|+C \\ & I=\frac{3 x}{7}+\frac{29}{21} \ln \left(7+3 e^{-2 x}\right)+C\end{aligned}$
$\begin{aligned} & \Rightarrow \quad K=3 / 7 \text { and } L=29 / 21 \\ & \Rightarrow K+L=\frac{3}{7}+\frac{29}{21}=\frac{9+29}{21}=\frac{38}{21}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.