Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{3^x}{\sqrt{9^x-1}} d x=$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2018 (05 May Shift 1)
Options:
  • A $\frac{1}{\log 3} \log \left|3^x+\sqrt{9^x-1}\right|+c$
  • B $\frac{1}{\log 3} \log \left|3^x-\sqrt{9^x-1}\right|+c$
  • C $\frac{1}{\log 9} \log \left|3^x-\sqrt{9^x-1}\right|+c$
  • D $\frac{1}{\log 9} \log \left|9^x-\sqrt{9^x-1}\right|+c$
Solution:
2486 Upvotes Verified Answer
The correct answer is: $\frac{1}{\log 3} \log \left|3^x+\sqrt{9^x-1}\right|+c$
We have, $\int \frac{3^x}{\sqrt{9^x-1}} d x$
Put $3^x=t \Rightarrow 3^x \log 3 d x=d t$
$$
\begin{aligned}
& \therefore \frac{1}{\log 3} \int \frac{d t}{\sqrt{t^2-1}}=\frac{1}{\log 3} \log \left|t+\sqrt{t^2-1}\right|+c \\
& \text { Put } t=3^x=\frac{1}{\log 3} \log \left|3^x+\sqrt{9^x-1}\right|+c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.