Search any question & find its solution
Question:
Answered & Verified by Expert
A body at an unknow temperature is placed in a room which is held at a constant temperature of $30^{\circ} \mathrm{F}$. If after 10 minutes the temperature of the body is $0^{\circ} \mathrm{F}$ and after 20 minutes the temperature of the body is $15^{\circ} \mathrm{F}$, then the expression for the temperature of the body at any time $t$ is
Options:
Solution:
1680 Upvotes
Verified Answer
The correct answer is:
$\mathrm{T}=-60 \mathrm{e}^{-0.03010 \mathrm{t}}+30$
We have $\frac{\mathrm{dT}}{\mathrm{dt}} \propto(30-\mathrm{T})$
$$
\begin{aligned}
& \therefore \frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{K}(30-\mathrm{T}) \Rightarrow \int \frac{\mathrm{dT}}{30-\mathrm{T}}=\int-\mathrm{Kt} \\
& \therefore \log |30-\mathrm{T}|=-\mathrm{kt}+\mathrm{c}
\end{aligned}
$$
From given data, we write
$$
\begin{aligned}
& \log |30-0|=-10 K+c \\
& \log |30-15|=-20 K+c
\end{aligned}
$$
Solving (2) and (3), we get
$$
\log \left(\frac{30}{15}\right)=10 \mathrm{~K} \Rightarrow \mathrm{K}=\frac{1}{10} \log 2
$$
Substituting value of $\mathrm{K}$ in eq. (2), we get
$$
\log 30=(-10)\left(\frac{\log 2}{10}\right)+\mathrm{c} \Rightarrow \mathrm{c}=\log 60
$$
Thus eq. (1) becomes
$$
\begin{aligned}
& \log |30-\mathrm{T}|=\frac{-\log 2}{10} \mathrm{t}+\log 60 \\
& \therefore \log \left|\frac{30-\mathrm{T}}{60}\right|=\frac{-0.3010}{10} \mathrm{t}=-0.03010 \mathrm{t} \\
& \therefore \frac{30-\mathrm{T}}{60}=\mathrm{e}^{-0.03010 \mathrm{t}} \quad \therefore \mathrm{T}=-60 \mathrm{e}^{-0.03010 \mathrm{t}}+30
\end{aligned}
$$
$$
\begin{aligned}
& \therefore \frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{K}(30-\mathrm{T}) \Rightarrow \int \frac{\mathrm{dT}}{30-\mathrm{T}}=\int-\mathrm{Kt} \\
& \therefore \log |30-\mathrm{T}|=-\mathrm{kt}+\mathrm{c}
\end{aligned}
$$
From given data, we write
$$
\begin{aligned}
& \log |30-0|=-10 K+c \\
& \log |30-15|=-20 K+c
\end{aligned}
$$
Solving (2) and (3), we get
$$
\log \left(\frac{30}{15}\right)=10 \mathrm{~K} \Rightarrow \mathrm{K}=\frac{1}{10} \log 2
$$
Substituting value of $\mathrm{K}$ in eq. (2), we get
$$
\log 30=(-10)\left(\frac{\log 2}{10}\right)+\mathrm{c} \Rightarrow \mathrm{c}=\log 60
$$
Thus eq. (1) becomes
$$
\begin{aligned}
& \log |30-\mathrm{T}|=\frac{-\log 2}{10} \mathrm{t}+\log 60 \\
& \therefore \log \left|\frac{30-\mathrm{T}}{60}\right|=\frac{-0.3010}{10} \mathrm{t}=-0.03010 \mathrm{t} \\
& \therefore \frac{30-\mathrm{T}}{60}=\mathrm{e}^{-0.03010 \mathrm{t}} \quad \therefore \mathrm{T}=-60 \mathrm{e}^{-0.03010 \mathrm{t}}+30
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.