Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A child is standing with folded hands at the centre of the platform rotating about its central axis. The kinetic energy of the system is ' $\mathrm{K}$ '. The child now stretches his arms so that the moment of inertia of the system becomes double. The kinetic energy of system now is
PhysicsRotational MotionMHT CETMHT CET 2021 (22 Sep Shift 2)
Options:
  • A $\frac{\mathrm{K}}{2}$
  • B $2 \mathrm{~K}$
  • C $4 \mathrm{~K}$
  • D $\frac{\mathrm{K}}{4}$
Solution:
1820 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{K}}{2}$
$$
\begin{aligned}
\mathrm{K} & =\frac{1}{2} \mathrm{I} \omega^2 \\
\mathrm{I}^{\prime} & =2 \mathrm{I}
\end{aligned}
$$
By law of conservation of angular momentum
$$
\begin{aligned}
& \mathrm{I}^{\prime} \omega^{\prime}=\mathrm{I} \omega \\
& \therefore 2 \mathrm{I} \omega^{\prime}=\mathrm{I} \omega \\
& \therefore \omega^{\prime}=\frac{\omega}{2} \\
& \mathrm{~K}^{\prime}=\frac{1}{2} \mathrm{I}^{\prime} \omega^{\prime 2}=\frac{1}{2}(2 \mathrm{I})\left(\frac{\omega}{2}\right)^2=\frac{1}{2}\left(\frac{1}{2} \mathrm{I} \omega^2\right)=\frac{\mathrm{K}}{2}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.