Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A fair die is tossed twice in succession. If $\mathrm{X}$ denotes the number of sixes in two tosses, then the probability distribution of $\mathrm{X}$ is given by
MathematicsProbabilityMHT CETMHT CET 2023 (10 May Shift 2)
Options:
  • A \begin{array}{|l|c|c|c|}
    \hline \mathrm{X}=x & 0 & 1 & 2 \\
    \hline \mathrm{P}(\mathrm{X}=x) & \frac{25}{36} & \frac{1}{36} & \frac{5}{18} \\
    \hline
    \end{array}
  • B \begin{array}{|l|c|c|c|}
    \hline \mathrm{X}=x & 0 & 1 & 2 \\
    \hline \mathrm{P}(\mathrm{X}=x) & \frac{5}{18} & \frac{1}{36} & \frac{25}{36} \\
    \hline
    \end{array}
  • C \begin{array}{|l|c|c|c|}
    \hline \mathrm{X}=x & 0 & 1 & 2 \\
    \hline \mathrm{P}(\mathrm{X}=x) & \frac{25}{36} & \frac{5}{18} & \frac{1}{36} \\
    \hline
    \end{array}
  • D \begin{array}{|l|c|c|c|}
    \hline \mathrm{X}=x & 0 & 1 & 2 \\
    \hline \mathrm{P}(\mathrm{X}=x) & \frac{5}{18} & \frac{25}{36} & \frac{1}{36} \\
    \hline
    \end{array}
Solution:
1041 Upvotes Verified Answer
The correct answer is: \begin{array}{|l|c|c|c|}
\hline \mathrm{X}=x & 0 & 1 & 2 \\
\hline \mathrm{P}(\mathrm{X}=x) & \frac{25}{36} & \frac{5}{18} & \frac{1}{36} \\
\hline
\end{array}
$\mathrm{X}$ can take values 0,1 and 2 .
$P(X=0)=$ Probability of not getting six $=\frac{25}{36}$
$\mathrm{P}(\mathrm{X}=1)=$ Probability of getting one six
$=\frac{10}{36}=\frac{5}{18}$
$P(X=2)=$ Probability of getting two sixes $=\frac{1}{36}$
The probability distribution of $\mathrm{X}$ is
\begin{array}{|l|c|c|c|}
\hline \mathrm{X}=x & 0 & 1 & 2 \\
\hline \mathrm{P}(\mathrm{X}=x) & \frac{25}{36} & \frac{5}{18} & \frac{1}{36} \\
\hline
\end{array}

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.