Search any question & find its solution
Question:
Answered & Verified by Expert
A matrix whose elements $a_{i j}$ are defined by
$a_{i j}=\frac{1}{3}|i-5 j|, i, j=1,2,3 \text { is }$
Options:
$a_{i j}=\frac{1}{3}|i-5 j|, i, j=1,2,3 \text { is }$
Solution:
2713 Upvotes
Verified Answer
The correct answer is:
$\left[\begin{array}{ccc}\frac{4}{3} & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right]$
The given matrix is defined by
$\mathrm{a}_{\hat{\mathrm{ij}}}=\frac{1}{3}|\mathrm{i}-5 \mathrm{j}|$
So, $\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}\frac{4}{3} & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right)$
$\mathrm{a}_{\hat{\mathrm{ij}}}=\frac{1}{3}|\mathrm{i}-5 \mathrm{j}|$
So, $\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}\frac{4}{3} & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.