Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A matrix whose elements $a_{i j}$ are defined by
$a_{i j}=\frac{1}{3}|i-5 j|, i, j=1,2,3 \text { is }$
MathematicsMatricesJEE Main
Options:
  • A $\left[\begin{array}{ccc}4 & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & 13 \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right]$
  • B $\left[\begin{array}{ccc}\frac{4}{3} & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right]$
  • C $\left[\begin{array}{ccc}\frac{4}{3} & 3 & \frac{10}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ 2 & 7 & 4\end{array}\right]$
  • D $\left[\begin{array}{lll}4 & 3 & 10 \\ 1 & 8 & 13 \\ 2 & 7 & 4\end{array}\right]$
Solution:
2713 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{ccc}\frac{4}{3} & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right]$
The given matrix is defined by
$\mathrm{a}_{\hat{\mathrm{ij}}}=\frac{1}{3}|\mathrm{i}-5 \mathrm{j}|$
So, $\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}\frac{4}{3} & 3 & \frac{14}{3} \\ 1 & \frac{8}{3} & \frac{13}{3} \\ \frac{2}{3} & \frac{7}{3} & 4\end{array}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.