Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A metal rod of cross-sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is suspended vertically from one
end has a length $0 \cdot 4 \mathrm{~m}$ at $100^{\circ} \mathrm{C}$. Now the rod is cooled upto $0^{\circ} \mathrm{C}$, but prevented
from contracting by attaching a mass ' $\mathrm{m}$ ' at the lower end. The value of ' $\mathrm{m}$ ' is
$\left(\mathrm{Y}=10^{11} \mathrm{~N} / \mathrm{m}^{2}\right.$, coefficient of linear expansion $\left.=10^{-5} / \mathrm{K}, \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
PhysicsThermal Properties of MatterMHT CETMHT CET 2020 (13 Oct Shift 1)
Options:
  • A $40 \mathrm{~kg}$
  • B $20 \mathrm{~kg}$
  • C $30 \mathrm{~kg}$
  • D $10 \mathrm{~kg}$
Solution:
2153 Upvotes Verified Answer
The correct answer is: $30 \mathrm{~kg}$
$\Delta \mathrm{L}=\mathrm{L} \propto \Delta \mathrm{T}=\frac{\mathrm{FL}}{\mathrm{AY}}$
$\therefore \mathrm{F}=\mathrm{AY} \propto \Delta \mathrm{T}$
$\therefore \mathrm{Mg}=\mathrm{AY} \propto \Delta \mathrm{T}$
$\mathrm{M}=\frac{\mathrm{AY} \propto \Delta \mathrm{T}}{\mathrm{g}}=\frac{3 \times 10^{-6} \times 10^{11} \times 10^{-5} \times 100}{10}=30 \mathrm{~kg}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.