Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle at rest starts moving with constant angular acceleration $4 \mathrm{rad} / \mathrm{s}^2$ in circular path. At what time the magnitudes of its tangential acceleration and centrifugal acceleration will be equal?
PhysicsMotion In Two DimensionsMHT CETMHT CET 2023 (09 May Shift 2)
Options:
  • A $0.4 \mathrm{~s}$
  • B $0.5 \mathrm{~s}$
  • C $0.8 \mathrm{~s}$
  • D $1.0 \mathrm{~s}$
Solution:
1885 Upvotes Verified Answer
The correct answer is: $0.5 \mathrm{~s}$
In rotational motion,
$\begin{aligned}
& \omega=\omega_0+\alpha \mathrm{t} \\
& \omega=\alpha \mathrm{t}
\end{aligned}$
$\text { ( } \because \omega_0=0 \text {; particle at rest.) }$
$\therefore \quad$ Centrifugal acceleration $\mathrm{a}=\omega^2 \mathrm{r}$
$\therefore \quad \mathrm{a}=\alpha^2 \mathrm{t}^2 \mathrm{r}$
Tangential acceleration $\mathrm{a}_{\mathrm{t}}=\alpha \times \mathrm{r}$
Given: $\mathrm{a}=\mathrm{a}_{\mathrm{t}}$
$\Rightarrow \alpha^2 \mathrm{t}^2 \mathrm{r}=\alpha \mathrm{r}$
$\mathrm{t}^2=\frac{1}{\alpha}=\frac{1}{4}$
$\therefore \quad \mathrm{t}=\frac{1}{2}=0.5 \mathrm{~s}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.