Search any question & find its solution
Question:
Answered & Verified by Expert
A particle executes linear S.H.M. along the principal axis of a convex lens of focal length $8 \mathrm{~cm}$. The mean position of oscillation is at $14 \mathrm{~cm}$ from the lens with amplitude $1 \mathrm{~cm}$. The amplitude of oscillating image of the particle is nearly
Options:
Solution:
1395 Upvotes
Verified Answer
The correct answer is:
$2 \mathrm{~cm}$
$\mathrm{f}=8 \mathrm{~cm}$, when the particle is at mean position, $\mathrm{u}=-14 \mathrm{~cm}$
$$
\begin{aligned}
& \frac{1}{\mathrm{~V}}=\frac{1}{\mathrm{f}}+\frac{1}{\mathrm{u}}=\frac{1}{8}-\frac{1}{14}=\frac{3}{56} \\
& \therefore \mathrm{V}=\frac{56}{3} \approx 19 \mathrm{~cm}
\end{aligned}
$$
When the particle is at one of the extreme positions its distance from the lens is $14+1=15 \mathrm{~cm}$
$$
\therefore \mathrm{u}=-15 \mathrm{~cm}
$$
Again, $\frac{1}{\mathrm{~V}}=\frac{1}{\mathrm{f}}+\frac{1}{\mathrm{u}}=\frac{1}{8}-\frac{1}{15}=\frac{7}{120}$
$$
\therefore \mathrm{v}=\frac{120}{7} \approx 17 \mathrm{~cm}
$$
Amplitude of the image $=19-17=2 \mathrm{~cm}$
$$
\begin{aligned}
& \frac{1}{\mathrm{~V}}=\frac{1}{\mathrm{f}}+\frac{1}{\mathrm{u}}=\frac{1}{8}-\frac{1}{14}=\frac{3}{56} \\
& \therefore \mathrm{V}=\frac{56}{3} \approx 19 \mathrm{~cm}
\end{aligned}
$$
When the particle is at one of the extreme positions its distance from the lens is $14+1=15 \mathrm{~cm}$
$$
\therefore \mathrm{u}=-15 \mathrm{~cm}
$$
Again, $\frac{1}{\mathrm{~V}}=\frac{1}{\mathrm{f}}+\frac{1}{\mathrm{u}}=\frac{1}{8}-\frac{1}{15}=\frac{7}{120}$
$$
\therefore \mathrm{v}=\frac{120}{7} \approx 17 \mathrm{~cm}
$$
Amplitude of the image $=19-17=2 \mathrm{~cm}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.