Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A particle of mass $\mathrm{m}$ is moving in a straight line with momentum p. Starting at time $t=0,$ a force $F=k$ t acts in the same direction on the moving particle during time interval T so that its momentum changes from $\mathrm{p}$ to $3 \mathrm{p}$. Here $k$ is a constant. The value of $\mathrm{T}$ is
PhysicsLaws of MotionJEE MainJEE Main 2019 (11 Jan Shift 2)
Options:
  • A $2 \sqrt{\frac{k}{p}}$
  • B $2 \sqrt{\frac{\mathrm{p}}{k}}$
  • C $\sqrt{\frac{2 k}{p}}$
  • D $\sqrt{\frac{2 p}{\mathrm{k}}}$
Solution:
2493 Upvotes Verified Answer
The correct answer is: $2 \sqrt{\frac{\mathrm{p}}{k}}$
From Newton's second law

$\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{F}=\mathrm{kt}$

Integrating both sides we get, $\int_{\mathrm{p}}^{3 \mathrm{p}} \mathrm{dp}=\int_{0}^{\mathrm{T}} \mathrm{ktdt} \Rightarrow[\mathrm{p}]_{\mathrm{p}}^{3 \mathrm{p}}=\mathrm{k}\left[\frac{\mathrm{t}^{2}}{2}\right]_{0}^{\mathrm{T}}$

$\Rightarrow 2 \mathrm{p}=\frac{\mathrm{kT}^{2}}{2} \Rightarrow \mathrm{T}=2 \sqrt{\frac{\mathrm{p}}{\mathrm{k}}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.