Search any question & find its solution
Question:
Answered & Verified by Expert
A spring having with a spring constant $1200 \mathrm{Nm}^{-1}$ is mounted on a horizontal table as shown in Fig. A mass of $3 \mathrm{~kg}$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \mathrm{~cm}$ and released.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.
Solution:
1722 Upvotes
Verified Answer
Given, $k=1200 \mathrm{~N} / \mathrm{m} ; m=3 \mathrm{~kg} ; a=2 \mathrm{~cm}=0.02 \mathrm{~m}$
(i) Frequency $=v=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
$$
=\frac{1}{2 \times 3.14} \sqrt{\frac{1200}{3}}=3.2 \mathrm{~s}^{-1}
$$
(ii) Acceleration $=\omega^2 y=\frac{k}{m} y$;
Max. acceleration $=\frac{k a}{m}=\frac{1200 \times 0.02}{3}=8 \mathrm{~m} / \mathrm{s}^2$
(iii) Max. speed $=a \omega$
$$
=a \sqrt{\frac{k}{m}}=0.02 \times \sqrt{\frac{1200}{3}}=0.4 \mathrm{~m} / \mathrm{s}
$$
(i) Frequency $=v=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
$$
=\frac{1}{2 \times 3.14} \sqrt{\frac{1200}{3}}=3.2 \mathrm{~s}^{-1}
$$
(ii) Acceleration $=\omega^2 y=\frac{k}{m} y$;
Max. acceleration $=\frac{k a}{m}=\frac{1200 \times 0.02}{3}=8 \mathrm{~m} / \mathrm{s}^2$
(iii) Max. speed $=a \omega$
$$
=a \sqrt{\frac{k}{m}}=0.02 \times \sqrt{\frac{1200}{3}}=0.4 \mathrm{~m} / \mathrm{s}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.