Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A uniform wire (Young's modulus $2 \times 10^{11} \mathrm{Nm}^{-2}$ ) is subjected to longitudinal tensile stress of $5 \times 10^7 \mathrm{Nm}^{-2}$. If the overall volume change in the wire is $0.02 \%$, the fractional decrease in the radius of the wire is close to:
PhysicsMechanical Properties of SolidsJEE MainJEE Main 2013 (22 Apr Online)
Options:
  • A
    $1.0 \times 10^{-4}$
  • B
    $1.5 \times 10^{-4}$
  • C
    $0.25 \times 10^{-4}$
  • D
    $5 \times 10^{-4}$
Solution:
1929 Upvotes Verified Answer
The correct answer is:
$0.25 \times 10^{-4}$
Given, $y=2 \times 10^{11} \mathrm{Nm}^{-2}$
$$
\begin{aligned}
& \text { Stress }\left(\frac{\mathrm{F}}{\mathrm{A}}\right)=5 \times 10^7 \mathrm{Nm}^{-2} \\
& \Delta \mathrm{V}=0.02 \%=2 \times 10^{-4} \mathrm{~m}^3 \\
& \frac{\Delta \mathrm{r}}{\mathrm{r}}=?
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\frac{\text { stress }}{\text { strain }} \Rightarrow \operatorname{strain}\left(\frac{\Delta \ell}{\ell_0}\right)=\frac{\gamma}{\text { stress }} \\
& \Delta \mathrm{V}=2 \pi \mathrm{r} \ell_0 \Delta \mathrm{r}-\pi \mathrm{r}^2 \Delta \ell
\end{aligned}
$$
From eqns (i) and (ii) putting the value of $\Delta \ell, \ell_0$ and $\Delta \mathrm{V}$ and solving we get
$$
\frac{\Delta \mathrm{r}}{\mathrm{r}}=0.25 \times 10^{-4}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.