Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
An alternating electric field of frequency ' $v^{\prime}$ is applied across the dees of a cyclotron which is used to accelerate protons of mass 'm'. The radius of the dees is 'R'. The operating magnetic field used in cyclotron is 'B'. The kinetic energy of the proton beam is given by
PhysicsMagnetic Effects of CurrentMHT CETMHT CET 2020 (20 Oct Shift 2)
Options:
  • A $2 m \pi^{2} v^{2} R^{2}$
  • B $2 m \pi v^{2} R^{2}$
  • C $m \pi^{2} v^{2} R^{2}$
  • D $m \pi v^{2} R^{2}$
Solution:
2962 Upvotes Verified Answer
The correct answer is: $2 m \pi^{2} v^{2} R^{2}$
Time period of cyclotron is
$\mathrm{T}=\frac{1}{\mathrm{v}}=\frac{2 \pi \mathrm{m}}{\mathrm{eB}} ; \mathrm{B}=\frac{2 \pi \mathrm{m}}{\mathrm{e}} \mathrm{v} ; \mathrm{R}=\frac{\mathrm{mv}}{\mathrm{eB}}=\frac{\mathrm{P}}{\mathrm{eB}}$
$\Rightarrow \mathrm{P}=\mathrm{eBR}=\mathrm{e} \times \frac{2 \pi \mathrm{mv}}{\mathrm{e}} \mathrm{R}=2 \pi \mathrm{mvR}$
$\mathrm{K.E.}$ $=\frac{\mathrm{P}^{2}}{2 \mathrm{m}}=\frac{(2 \pi \mathrm{mvR})^{2}}{2 \mathrm{m}}=2 \pi^{2} \mathrm{mv}^{2} \mathrm{R}^{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.