Search any question & find its solution
Question:
Answered & Verified by Expert
An atomic power nuclear reactor can deliver 300 MW. The energy released due to fission of each nucleus of uranium atoms $\mathrm{U}^{238}$ is 170 MeV . The number of uranium atoms fissioned per hour will be
Options:
Solution:
1429 Upvotes
Verified Answer
The correct answer is:
$4 \times 10^{22}$
Power $=\frac{\text { Energy }}{\text { Time }}=300 \times 10^6 \mathrm{~W}=3 \times 10^8 \mathrm{~J} / \mathrm{s}$
Energy released due to fission
$\begin{gathered}=170 \mathrm{MeV}=170 \times 10^6 \times 1.6 \times 10^{-19} \\ =27.2 \times 10^{-12} \mathrm{~J}\end{gathered}$
Number of atoms fissioned per second
$=\frac{3 \times 10^8}{27.2 \times 10^{-12}}=\frac{3 \times 10^{20}}{27.2}$
Number of atoms fissioned per hour
$\begin{aligned} & =\frac{3 \times 10^{20} \times 3600}{27.2} \\ & =\frac{3 \times 36}{27.2} \times 10^{22}=4 \times 10^{22} \mathrm{~m}\end{aligned}$
Energy released due to fission
$\begin{gathered}=170 \mathrm{MeV}=170 \times 10^6 \times 1.6 \times 10^{-19} \\ =27.2 \times 10^{-12} \mathrm{~J}\end{gathered}$
Number of atoms fissioned per second
$=\frac{3 \times 10^8}{27.2 \times 10^{-12}}=\frac{3 \times 10^{20}}{27.2}$
Number of atoms fissioned per hour
$\begin{aligned} & =\frac{3 \times 10^{20} \times 3600}{27.2} \\ & =\frac{3 \times 36}{27.2} \times 10^{22}=4 \times 10^{22} \mathrm{~m}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.