Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Assertion (A) $\frac{d}{d x}\left(\frac{x^2 \sin x}{\log x}\right)=\frac{x^2 \sin x}{\log x}$ $\left(\cot x+\frac{2}{x}-\frac{1}{x \log x}\right)$
$\operatorname{Reason}(\mathbf{R}) \frac{d}{d x}\left(\frac{u v}{w}\right)=\frac{u v}{w}\left[\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}\right]$
MathematicsDifferentiationAP EAMCETAP EAMCET 2022 (05 Jul Shift 1)
Options:
  • A $A$ is true, $R$ is true and $R$ is correct explanation of A
  • B $A$ is true, $R$ is true and $R$ is not correct explanation of $A$
  • C $A$ is true, $R$ is not correct
  • D $A$ is not correct, $R$ is correct
Solution:
2288 Upvotes Verified Answer
The correct answer is: $A$ is true, $R$ is true and $R$ is correct explanation of A
Assertion : $\frac{d}{d x}\left(\frac{x^2 \sin x}{\log x}\right)$
$\begin{aligned} & =\frac{(\log x)\left[x^2 \cos x+2 x \sin x\right]-x \sin x}{(\log x)^2} \\ & =\frac{x^2 \cos x \log x+2 x \sin x \log x-x \sin x}{(\log x)^2}\end{aligned}$
$=\frac{x^2 \sin x}{\log x}\left[\cot x+\frac{2}{x}-\frac{1}{x \log x}\right]$
Reason : $\frac{d}{d x}\left(\frac{u v}{w}\right)=\frac{u w}{w}\left[\frac{u^{\prime}}{u}+\frac{v^{\prime}}{v}+\frac{w^{\prime}}{w}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.