Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Calculate the mean deviation about the mean for the following frequency distribution:

$$
\begin{array}{|c|c|c|c|c|c|}
\hline \text { Class interval } & 0-4 & 4-8 & 8-12 & 12-16 & 16-20 \\
\hline \text { Frequency } & 4 & 6 & 8 & 5 & 2 \\
\hline
\end{array}
$$
MathematicsStatistics
Solution:
2103 Upvotes Verified Answer
$$
\begin{array}{|c|c|c|c|c|c|}
\hline \begin{array}{l}
\text { Class } \\
\text { interval }
\end{array} & \begin{array}{l}
\text { Mid } \\
\text { Value } \\
\left(\mathbf{x}_{\mathrm{i}}\right)
\end{array} & \begin{array}{l}
\text { Frequency } \\
(\boldsymbol{f})
\end{array} & \boldsymbol{f x} & (\boldsymbol{x}-\overline{\boldsymbol{x}}) & \boldsymbol{f} \cdot|\boldsymbol{x}-\overline{\boldsymbol{x}}| \\
\hline 0-4 & 2 & 4 & 8 & 7.2 & 28.8 \\
4-8 & 6 & 6 & 36 & 3.2 & 19.2 \\
8-12 & 10 & 8 & 80 & 0.8 & 6.4 \\
12-16 & 14 & 5 & 70 & 4.8 & 24.4 \\
16-20 & 18 & 2 & 36 & 8.8 & 17.6 \\
\hline & & 25 & 230 & & 96.0 \\
\hline
\end{array}
$$


$$
\therefore \quad \bar{x}=\frac{230}{25}=9.2
$$
Required M.D $=\frac{96}{25}=3.84$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.