Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Calculate the standard cell potentials of galvanic cell in which the following reactions take place \( 2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{Cd}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Cd} \) Calculate the \( \Delta_{\mathrm{r}} \mathrm{G}^{0} \) and equilibrium constant for the reactions. \(\mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{\mathrm{o}}=-0.74 \mathrm{~V}, \mathrm{E}_{\mathrm{Cd}^{2+} / \mathrm{Cd}}^{\mathrm{o}}=-0.40 \mathrm{~V}\) The values of \( E_{\text {cell }}^{0}, \Delta_{r} G^{0} \) and \( \mathrm{K}_{\mathrm{C}} \) may be
ChemistryElectrochemistryJEE Main
Options:
  • A \( \begin{array}{ccc}E_{\text {cell }}^{0} & \Delta_{r} G^{0} & K_{c} \\ 0 \cdot 34 \mathrm{~V} & -196 \cdot 86 \mathrm{~kJ} & 3 \cdot 17 \times 10^{34}\end{array} \)
  • B \( \begin{array}{ccc}E_{\text {cell }}^{0} & \Delta_{r} G^{0} & K_{c} \\ 0 \cdot 34 \mathrm{~V} & -146 \cdot 86 \mathrm{~kJ} & 3 \cdot 17 \times 10^{34}\end{array} \)
  • C \( \begin{array}{ccc}E_{\text {cell }}^{0} & \Delta_{r} G^{0} & K_{c} \\ 0 \cdot 34 \mathrm{~V} & -106 \cdot 86 \mathrm{~kJ} & 1 \cdot 17 \times 10^{34}\end{array} \)
  • D None of these
Solution:
2906 Upvotes Verified Answer
The correct answer is: \( \begin{array}{ccc}E_{\text {cell }}^{0} & \Delta_{r} G^{0} & K_{c} \\ 0 \cdot 34 \mathrm{~V} & -196 \cdot 86 \mathrm{~kJ} & 3 \cdot 17 \times 10^{34}\end{array} \)

Given  ; 2Crs+3Cd2+aq2Cr3+aq+3Cd

E Cr 3 + / Cr o = - 0 . 7 V;  E Cd 2 + / Cd o = - 0 . 4 0  V
(a)  Calculation of standard cell potential (Eo)
                         Ecello=Ecathodeo-EanodeoEcello = (-0.40)-(-0.74) VEcello = -0.40 + 0.74V = 0.34V
Ecello=0.34 V
(b)  Calculation of Δ r G o

We know that , 
 ΔrGo=-nFEcello

Here the value of n = 6 

thus ,ΔrGo=- 6 × 96500 × 0.34 J mol-1ΔrGo = -196860 J mol-1ΔrGo = -196.86 kJmol-1  
(c)  Calculation of equilibrium constant (Kc)
 ΔrGo=-2.303 RT log Kc 
   log  K c = - Δ r G o 2 . 3 0 3  RT
 log Kc=-(-196860)2·303×8·314×298log Kc = 34.50Kc= Antilog (34.501) =3.17 × 1034

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.