Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Calculate the wave number and frequency of orange radiation having wavelength \(6300 Å\).
ChemistryStructure of AtomAP EAMCETAP EAMCET 2020 (17 Sep Shift 1)
Options:
  • A \(1.587 \times 10^8 \mathrm{~m}^{-1}, 4.761 \times 10^{16} \mathrm{~s}^{-1}\)
  • B \(1.587 \times 10^4 \mathrm{~m}^{-1}, 4.761 \times 10^{14} \mathrm{~s}^{-1}\)
  • C \(1.587 \times 10^6 \mathrm{~m}^{-1}, 4.761 \times 10^{14} \mathrm{~s}^{-1}\)
  • D \(1.587 \times 10^6 \mathrm{~m}^{-1}, 4.761 \times 10^{16} \mathrm{~s}^{-1}\)
Solution:
2692 Upvotes Verified Answer
The correct answer is: \(1.587 \times 10^6 \mathrm{~m}^{-1}, 4.761 \times 10^{14} \mathrm{~s}^{-1}\)
For orange radiation (EMR) of \(\lambda=6300 Å\)
(i) Wave number,
\(\bar{v}=\frac{1}{\lambda}=\frac{1}{6300 Å}=\frac{1}{6300 \times 10^{-10} \mathrm{~m}}\)
\(=1.587 \times 10^6 \mathrm{~m}^{-1}\)
(ii) Frequency,
\(\begin{aligned}
\mathrm{v} & =\frac{c}{\lambda}=\frac{3 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}}{6300 \times 10^{-10} \mathrm{~m}} \\
& =4.761 \times 10^{14} \mathrm{~s}^{-1}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.