Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\text { If }\left[\begin{array}{cc}
1 & -\tan \theta \\
\tan \theta & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \tan \theta \\
-\tan \theta & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right],$
then
MathematicsMatricesBITSATBITSAT 2022
Options:
  • A
    $a=1, b=1$
  • B
    $a=\sin 2 \theta, b=\cos 2 \theta$
  • C
    $a=\cos 2 \theta, b=\sin 2 \theta$
  • D
    None of these
Solution:
1746 Upvotes Verified Answer
The correct answer is:
$a=\cos 2 \theta, b=\sin 2 \theta$
Given,
$\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right] \cdot \frac{1}{1+\tan ^2 \theta}\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]$
$=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow \frac{1}{1+\tan ^2 \theta}\left[\begin{array}{cc}1-\tan ^2 \theta & -2 \tan \theta \\ 2 \tan \theta & 1-\tan ^2 \theta\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow \quad\left[\begin{array}{cc}\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta} & \frac{2 \tan \theta}{1+\tan ^2 \theta} \\ \frac{2 \tan \theta}{1+\tan ^2 \theta} & \frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$\Rightarrow \quad a=\cos 2 \theta, b=\sin 2 \theta$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.