Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $2 x^2-3 x y+y^2+x+2 y-8=0$, then $\frac{d y}{d x}$ is equal to
MathematicsDifferentiationAP EAMCETAP EAMCET 2007
Options:
  • A $\frac{3 y-4 x-1}{2 y-3 x+2}$
  • B $\frac{3 y+4 x+1}{2 y+3 x+2}$
  • C $\frac{3 y-4 x+1}{2 y-3 x-2}$
  • D $\frac{3 y-4 x+1}{2 y+3 x+2}$
Solution:
2995 Upvotes Verified Answer
The correct answer is: $\frac{3 y-4 x-1}{2 y-3 x+2}$
We have, $2 x^2-3 x y+y^2+x+2 y-8=0$
On differentiating w.r.t. $x$, we get
$\begin{array}{ll}4 x-3 x \frac{d y}{d x}-3 y+2 y \frac{d y}{d x}+1+\frac{2 d y}{d x}-0=0 \\ \Rightarrow & 4 x+(-3 x+2 y+2) \frac{d y}{d x}-3 y+1=0 \\ \Rightarrow & \frac{d y}{d x}=\frac{3 y-4 x-1}{2 y-3 x+2}\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.