Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, where $I$ is unit matrix of order 2 , then the values of $x$ and $y$ are respectively
MathematicsMatricesMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $\frac{1}{11}, \frac{2}{11}$
  • B $\frac{-1}{11}, \frac{2}{11}$
  • C $\frac{1}{11}, \frac{-2}{11}$
  • D $\frac{-1}{11}, \frac{-2}{11}$
Solution:
2908 Upvotes Verified Answer
The correct answer is: $\frac{-1}{11}, \frac{2}{11}$
$|\mathrm{A}|=\left|\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right|=1+10=11$ and adj $\mathrm{A}=\left[\begin{array}{cc}1 & -2 \\ 5 & 1\end{array}\right]$
$\therefore \mathrm{A}^{-1}=\frac{1}{11}\left[\begin{array}{cc}1 & -2 \\ 5 & 1\end{array}\right]$
Given $\mathrm{A}^{-1}=\mathrm{x} \mathrm{A}+\mathrm{yI}$
$$
\frac{1}{11}\left[\begin{array}{cc}1 & -2 \\ 5 & 1\end{array}\right]=\left[\begin{array}{cc}\mathrm{x} & 2 \mathrm{x} \\ -5 \mathrm{x} & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 0 & \mathrm{y}\end{array}\right]
$$
$\therefore \frac{1}{11}\left[\begin{array}{cc}1 & -2 \\ 5 & 1\end{array}\right] \quad=\left[\begin{array}{cc}\mathrm{x}+\mathrm{y} & 2 \mathrm{x} \\ -5 \mathrm{x} & \mathrm{x}+\mathrm{y}\end{array}\right]$
$\therefore 2 \mathrm{x}=\frac{-2}{11} \Rightarrow \mathrm{x}=\frac{-1}{11}$ and $\mathrm{x}+\mathrm{y}=\frac{1}{11} \Rightarrow \mathrm{y}=\frac{2}{11}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.