Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a \alpha^2+b \beta^2+c \alpha \beta+d=0$ is the transformed equation of $4 x^2+\sqrt{3} x y+5 y^2-4=0$ obtained by using $\alpha=\frac{\sqrt{3}}{2} x+\frac{y}{2}$ and $\beta=-\frac{x}{2}+\frac{\sqrt{3}}{2} y$, then $c(a+b+d)=$
MathematicsStraight LinesTS EAMCETTS EAMCET 2020 (14 Sep Shift 2)
Options:
  • A 0
  • B $13 \sqrt{3}$
  • C $5 \sqrt{3}$
  • D 6
Solution:
2237 Upvotes Verified Answer
The correct answer is: $5 \sqrt{3}$
$a \alpha^2+b \beta^2+c \alpha \beta+d=0$ is the transformed equation of $4 x^2+\sqrt{3} x y+5 y^2-4=0$
where,
$\begin{aligned}
& \alpha=\frac{\sqrt{3}}{2} x+\frac{y}{2} \\
& \beta=\frac{-x}{2}+\frac{\sqrt{3} y}{2}
\end{aligned}$
From Eqs. (i) and (ii), we get
$x=\frac{\sqrt{3}}{2} \alpha+\frac{\beta}{2} \Rightarrow y=\frac{\alpha}{2}-\frac{\sqrt{3}}{2} \beta$
Putting the value of $x$ and $y$ in $4 x^2+\sqrt{3} x y+5 y^2-4=0$, we get
$\begin{array}{ll}
4\left(\frac{\sqrt{3}}{2} \alpha+\frac{\beta}{2}\right)^2+\sqrt{3}\left(\frac{\sqrt{3}}{2} \alpha+\frac{\beta}{2}\right)\left(\frac{\alpha}{2}-\frac{\sqrt{3}}{2} \beta\right) & +5\left(\frac{\alpha}{2}-\frac{\sqrt{3}}{2} \beta\right)^2-4=0 \\
\Rightarrow 5 \alpha^2+4 \beta^2+\sqrt{3} \alpha \beta-4=0 \\
\therefore a=5, b=4, c=\sqrt{3}, d=-4 \\
\therefore c(a+b+d)=\sqrt{3}(5+4-4)=5 \sqrt{3}
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.