Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{k}$ then $|\overrightarrow{\mathrm{c}}|$. $\vec{a}$ is equal to :
MathematicsVector AlgebraVITEEEVITEEE 2021
Options:
  • A $2 \sqrt{5} \hat{i}+2 \sqrt{5} \hat{j}+\sqrt{5} \hat{k}$
  • B $2 \sqrt{5} \hat{i}-2 \sqrt{5} \hat{j}+\sqrt{5} \hat{k}$
  • C $\sqrt{5} \hat{i}+\sqrt{5} \hat{j}+\sqrt{5} \hat{k}$
  • D $\sqrt{5} \hat{i}+2 \sqrt{5} \hat{j}+\sqrt{5} \hat{k}$
Solution:
1590 Upvotes Verified Answer
The correct answer is: $2 \sqrt{5} \hat{i}-2 \sqrt{5} \hat{j}+\sqrt{5} \hat{k}$
If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{k}$
$$
\begin{aligned}
& |\overrightarrow{\mathrm{c}}|=\sqrt{(-1)^2+2^2}=\sqrt{1+4}=\sqrt{5} \\
& |\vec{c}| \cdot \vec{a}=\sqrt{5} \cdot(2 \hat{i}-2 \hat{j}+\hat{k}) \\
& \therefore|\vec{c}| \cdot \vec{a}=2 \sqrt{5} \hat{i}-2 \sqrt{5} \hat{j}+\sqrt{5} \hat{k}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.