Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the projection of $\bar{b}$ in the direction of $\bar{a}$ is
MathematicsVector AlgebraMHT CETMHT CET 2023 (13 May Shift 1)
Options:
  • A $\frac{1}{\sqrt{29}}$
  • B $\frac{2}{\sqrt{3}}$
  • C $\frac{5}{\sqrt{3}}$
  • D $\frac{3}{\sqrt{29}}$
Solution:
2652 Upvotes Verified Answer
The correct answer is: $\frac{3}{\sqrt{29}}$
Projection of $\overline{\mathrm{b}}$ in the direction of $\overline{\mathrm{a}}=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}{|\overline{\mathrm{a}}|}$
$$
\begin{aligned}
& =\frac{(2 \hat{i}+3 \hat{j}-4 \hat{k}) \cdot(\hat{i}-\hat{j}-\hat{k})}{\sqrt{2^2+3^2+(-4)^2}} \\
& =\frac{2-3+4}{\sqrt{4+9+16}}=\frac{3}{\sqrt{29}}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.