Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|\mathbf{a}|=8,|\mathbf{b}|=3$ and $|\mathbf{a} \times \mathbf{b}|=12$, then find the angle between $\mathbf{a}$ and $\mathbf{b}$.
MathematicsVector AlgebraCOMEDKCOMEDK 2021
Options:
  • A $\frac{\pi}{3}$
  • B $\frac{\pi}{6}$
  • C $\frac{\pi}{4}$
  • D None of these
Solution:
2199 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{6}$
Given, $|\mathfrak{a}|=8,|\vec{b}|=3$ and $|\mathbf{a} \times \mathbf{b}|=12$
We know that, $\sin \theta=\frac{|a \times b|}{|a| b \mid}$
$\Rightarrow \quad \sin \theta=\frac{12}{8 \times 3}=\frac{1}{2} \Rightarrow \sin \theta=\sin \frac{\pi}{6}$
$\Rightarrow \quad \theta=\frac{\pi}{6} \quad\left[\sin \frac{\pi}{6}=\frac{1}{2}\right]$
Hence, angle between and b is $\frac{\pi}{6}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.