Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are wit vectors such that $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$ and $(\mathbf{a}, \mathbf{b})=\frac{\pi}{3}$, then $|\mathbf{a} \times \mathbf{b}|+|\mathbf{b} \times \mathbf{c}|+|\mathbf{c} \times \mathbf{a}|=$
MathematicsVector AlgebraTS EAMCETTS EAMCET 2017
Options:
  • A $\frac{3}{2}$
  • B 0
  • C $\frac{3 \sqrt{3}}{2}$
  • D 3
Solution:
2891 Upvotes Verified Answer
The correct answer is: $\frac{3 \sqrt{3}}{2}$
We have,
a, b, care unit vector
$\therefore|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=1$ and $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, angle between $\mathbf{a}$ and $\mathbf{b}$ is $\frac{\pi}{3}$.
Now,
$\mathbf{a}+\mathbf{b}+\mathbf{c}=0$
$\begin{aligned}
& \Rightarrow \quad \mathbf{a} \times\langle\mathbf{a}+\mathbf{b}+\mathbf{c}\rangle=0 \\
& \Rightarrow \mathbf{a} \times \mathbf{a}+\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}=0 \\
& \Rightarrow \quad \mathbf{a} \times \mathbf{b}=\mathbf{c} \times \mathbf{a} \\
& \Rightarrow \quad|\mathbf{a} \times \mathbf{b}|=|\mathbf{c} \times \mathbf{a}| \\
& \text {Similarly }|\mathbf{a} \times \mathbf{b}|=|\mathbf{b} \times \mathbf{c}| \\
& \therefore|\mathbf{a} \times \mathbf{b}|+|\mathbf{b} \times \mathbf{c}|+|\mathbf{c} \times \mathbf{a}| \\
& =3|\mathbf{a} \times \mathbf{b}| \\
& =3|\mathbf{a}||\mathbf{b}| \sin (a, b) \\
& =3 \times 1 \times 1 \times \sin \frac{\pi}{3}=\frac{3 \sqrt{3}}{2}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.