Search any question & find its solution
Question:
Answered & Verified by Expert
If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ and $B=\left[\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$ then the correct relation is
Options:
Solution:
1856 Upvotes
Verified Answer
The correct answer is:
$A B=B A$
$A B=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$
Clearly,
$=\left[\begin{array}{cc}\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\ \sin (\alpha+\beta) & \cos (\alpha+\beta)\end{array}\right]=B A \quad$ (verify by using trigonometric properties).
Clearly,
$=\left[\begin{array}{cc}\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\ \sin (\alpha+\beta) & \cos (\alpha+\beta)\end{array}\right]=B A \quad$ (verify by using trigonometric properties).
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.