Search any question & find its solution
Question:
Answered & Verified by Expert
If \( A=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right] \), then \( A^{2} \) equal to
Options:
Solution:
1356 Upvotes
Verified Answer
The correct answer is:
\( \left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \)
Given that \( A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \)
Now, \( A \cdot A=A^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \)
\( =\left[\begin{array}{ll}0+1 & 0+0 \\ 0+0 & 1+0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \)
Therefore \( A^{2}=I \)
Now, \( A \cdot A=A^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \)
\( =\left[\begin{array}{ll}0+1 & 0+0 \\ 0+0 & 1+0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \)
Therefore \( A^{2}=I \)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.