Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha, \beta, \gamma$ are the roots of the equation $x^3+4 x^2-9 x-36$ $=0$ and $\alpha < \beta < \gamma$ then $\alpha+2 \beta+3 \gamma=$
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2023 (13 May Shift 1)
Options:
  • A $1$
  • B $0$
  • C $-1$
  • D $-2$
Solution:
1965 Upvotes Verified Answer
The correct answer is: $-1$
$x^3+4 x^2-9 x-36=0$
$\Rightarrow \quad x^2(x+4)-9(x+4)=0$
$\begin{aligned} & \Rightarrow \quad(x+4)(x+3)(x-3)=0 \\ & \therefore \quad x=-4,-3,3 \Rightarrow \alpha=-4, \beta=-3, \gamma=3 \\ & \Rightarrow \quad \alpha+2 \beta+3 \gamma=-4+2(-3)+3(3)=-1 .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.