Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\alpha, \beta, \gamma$ are the roots of the equation $x^3-9 x^2+23 x-15=0$, then $\alpha^3+\beta^3+\gamma^3=$
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2022 (20 Jul Shift 1)
Options:
  • A 36
  • B 92
  • C 153
  • D 244
Solution:
1099 Upvotes Verified Answer
The correct answer is: 153
Given equation is $x^3-9 x^2+23 x-15=0$ with $\alpha, \beta$ and $\gamma$ roots of equation.


Take square both sides to eq. (i),
$$
\begin{aligned}
& (\alpha+\beta+\gamma)^2=(9)^2 \\
& \alpha^2+\beta^2+\gamma^2+2(\alpha \beta+\beta \gamma+\gamma \alpha)=81 \\
& \alpha^2+\beta^2+\gamma^2+2 \alpha \beta+2 \beta \gamma+2 \gamma \alpha=81 \\
& \alpha^2+\beta^2+\gamma^2+2(23)=81 \\
& \alpha^2+\beta^2+\gamma^2+46=81 \\
& \alpha^2+\beta^2+\gamma^2=35 \quad \ldots(\text { iv }) \\
& \text { Now, } \alpha^3+\beta^3+\gamma^3=(\alpha+\beta+\gamma)\left(\alpha^2+\beta^2+\gamma^2-\alpha \beta-\beta \gamma\right. \\
& -\gamma \alpha)+3 \alpha \beta \gamma
\end{aligned}
$$
$$
\begin{aligned}
& \alpha^3+\beta^3+\gamma^3=(9)(35-23)+3 \times 15 \\
& =9 \times(12)+45 \\
& =108+45=153
\end{aligned}
$$
So, option (c) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.