Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\frac{d y}{d x}+2 x \tan (x-y)=1$, then $\sin (x-y)$ is equal to
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2012
Options:
  • A $A e^{-x^2}$
  • B $A e^{2 x}$
  • C $A e^{x^2}$
  • D $A e^{-2 x}$
Solution:
1556 Upvotes Verified Answer
The correct answer is: $A e^{x^2}$
Given differential equation is
$\frac{d y}{d x}+2 x \tan (x-y)=1$
Put $x-y=t$
$\begin{array}{lrl}\Rightarrow & 1-\frac{d y}{d x}=\frac{d t}{d x} \\ \Rightarrow & \frac{d y}{d x}=1-\frac{d t}{d x} \\ \therefore & 1-\frac{d t}{d x}+2 x \tan t=1 \\ \Rightarrow & \frac{d t}{\tan t}=2 x d x \\ \Rightarrow & \cot t d t=2 x d x\end{array}$
On integrating both sides, we get
$\begin{aligned} \log \sin t & =x^2+\log A \\ \Rightarrow \quad \log \frac{\sin (x-y)}{A} & =x^2 \\ \Rightarrow \quad \sin (x-y) & =A e^{x^2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.