Search any question & find its solution
Question:
Answered & Verified by Expert
If $f\left(\frac{x-4}{x+2}\right)=2 x+1,(x \in R=\{1,-2\})$, then $\int f$ ( $x$ ) $d x$ is equal to (where $C$ is a constant of integration)
Options:
Solution:
1303 Upvotes
Verified Answer
The correct answer is:
$-12 \log _e|1-x|-3 x+c$
$-12 \log _e|1-x|-3 x+c$
Suppose, $\frac{x-4}{x+2}=y \Rightarrow x-4=y(x+2)$
$$
\Rightarrow x(1-y)=2 y+4 \Rightarrow x=\frac{2 y+4}{1-y}
$$
So, $f(y)=2\left(\frac{2 y+4}{1-y}\right)+1$
Now, $f(x)=2\left(\frac{2 x+4}{1-x}\right)+1=\frac{3 x+9}{1-x}$
$$
\begin{aligned}
&=\frac{3(x+3)}{1-x}=\frac{3(x-1+4)}{1-x}=-3+\frac{12}{1-x} \\
&\therefore \int f(x) d x=-12 \log _e|1-x|-3 x+c
\end{aligned}
$$
$$
\Rightarrow x(1-y)=2 y+4 \Rightarrow x=\frac{2 y+4}{1-y}
$$
So, $f(y)=2\left(\frac{2 y+4}{1-y}\right)+1$
Now, $f(x)=2\left(\frac{2 x+4}{1-x}\right)+1=\frac{3 x+9}{1-x}$
$$
\begin{aligned}
&=\frac{3(x+3)}{1-x}=\frac{3(x-1+4)}{1-x}=-3+\frac{12}{1-x} \\
&\therefore \int f(x) d x=-12 \log _e|1-x|-3 x+c
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.