Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\log (\sin x), x \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]$, then value of 'c'by applyng L.mv.T. is
MathematicsApplication of DerivativesMHT CETMHT CET 2020 (16 Oct Shift 1)
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{2 \pi}{3}$
  • C $\frac{3 \pi}{4}$
  • D $\frac{\pi}{4}$
Solution:
1280 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{2}$
(B)
Value of ' ' by applying L.M.V.T. is to be found out
$\begin{aligned}
f(x) &=\log (\sin x) \text { on }\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right] \Rightarrow \operatorname{lot} a=\frac{\pi}{6}, b=\frac{5 \pi}{6} \\
f^{\prime}(x) &=\frac{\cos x}{\sin x}=\cot x \Rightarrow f^{\prime}(c)=\cot c \\
f^{\prime}(c) &=\frac{f(b)-f(a)}{b-a}=\frac{f\left(\frac{5 \pi}{6}\right)-f\left(\frac{\pi}{6}\right)}{5 \frac{\pi}{6}-\frac{\pi}{6}} \\
\cot c &=\frac{\log \left[\sin \left(\frac{5 \pi}{6}\right)\right]-\log \left[\sin \left(\frac{\pi}{6}\right)\right]}{\frac{2 \pi}{3}}=\frac{\log \frac{1}{2}-\log \left(\frac{1}{2}\right)}{2 \frac{\pi}{3}} \\
\cot c=0 & \Rightarrow c=\frac{\pi}{2}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.