Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ is
MathematicsLimitsMHT CETMHT CET 2008
Options:
  • A 0
  • B $\alpha$
  • C 1
  • D None of these
Solution:
1875 Upvotes Verified Answer
The correct answer is: 1
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$
$=\lim _{x \rightarrow \infty} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\cos ^{2} x}{x}}}$
$=\sqrt{\frac{1-0}{1+0}}$
$\left[\because \frac{\sin x}{x} \rightarrow 0, \frac{\cos ^{2} x}{x} \rightarrow 0\right.$ as $\left.x \rightarrow \infty\right]$
$=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.