Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$, then I is
Options:
Solution:
2395 Upvotes
Verified Answer
The correct answer is:
$-\frac{\left(x^4+1\right)^{\frac{1}{4}}}{x}+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
Let $\mathrm{I}=\int \frac{1}{x^2\left(x^4+1\right)^{\frac{3}{4}}} \mathrm{~d} x=\int \frac{\mathrm{d} x}{x^5\left(1+\frac{1}{x^4}\right)^{\frac{3}{4}}}$
Put $1+\frac{1}{x^4}=\mathrm{t} \Rightarrow \frac{-4}{x^5} \mathrm{dx}=\mathrm{dt}$
$\begin{aligned}
\therefore \quad I & =-\frac{1}{4} \int \frac{\mathrm{dt}}{\mathrm{t}^{\frac{3}{4}}}=-\frac{1}{4} \times 4 \mathrm{t}^{\frac{1}{4}}+\mathrm{c}=-\mathrm{t}^{\frac{1}{4}}+\mathrm{c} \\
& =-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c} \\
& =\frac{-\left(x^4+1\right)^{\frac{1}{4}}}{x}+\mathrm{c}
\end{aligned}$
Put $1+\frac{1}{x^4}=\mathrm{t} \Rightarrow \frac{-4}{x^5} \mathrm{dx}=\mathrm{dt}$
$\begin{aligned}
\therefore \quad I & =-\frac{1}{4} \int \frac{\mathrm{dt}}{\mathrm{t}^{\frac{3}{4}}}=-\frac{1}{4} \times 4 \mathrm{t}^{\frac{1}{4}}+\mathrm{c}=-\mathrm{t}^{\frac{1}{4}}+\mathrm{c} \\
& =-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c} \\
& =\frac{-\left(x^4+1\right)^{\frac{1}{4}}}{x}+\mathrm{c}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.