Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\omega$ is a complex cube root of unity and $A=\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right]$, then $A^{-1}=$
MathematicsMatricesMHT CETMHT CET 2020 (19 Oct Shift 1)
Options:
  • A $\mathrm{A}^{2}$
  • B $2 \mathrm{~A}$
  • C $-\mathrm{A}$
  • D $\mathrm{A}$
Solution:
2267 Upvotes Verified Answer
The correct answer is: $\mathrm{A}^{2}$
(C)
Given $A=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right] \Rightarrow|A|=\left(\omega^{2}-0\right)=\omega^{2}$ and adj $A=\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right]$
$\therefore A^{-1}=\frac{1}{\omega^{2}}\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]=\left[\begin{array}{cc}\frac{1}{\omega} & 0 \\ 0 & \frac{1}{\omega}\end{array}\right]=\left[\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega^{2}\end{array}\right] \quad \ldots\left[\because \omega^{3}=1\right]$
$\therefore A^{2}=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]=\left[\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega^{2}\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.