Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $l=\lim _{x \rightarrow 0} \frac{x}{|x|+x^2}$, then the value of $l$ is
MathematicsLimitsMHT CETMHT CET 2023 (11 May Shift 2)
Options:
  • A $1$
  • B $-1$
  • C $2$
  • D non-existant
Solution:
1774 Upvotes Verified Answer
The correct answer is: non-existant
Let $\mathrm{f}(x)=\frac{x}{|x|+x^2}$
$\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0} \frac{x}{-x+x^2}=\lim _{x \rightarrow 0} \frac{1}{-1+x}=-1 \\
& \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 0} \frac{x}{x+x^2}=\lim _{x \rightarrow 0} \frac{1}{1+x}=1
\end{aligned}$
Here, $\lim _{x \rightarrow 0^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)$
$\therefore \quad$ Value of $l$ is non-existant

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.