Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{M}$ is the foot of the perpendicular drawn from $\mathrm{P}(1,2,-1)$ to the plane passing through the point $A(3,-2,1)$ and perpendicular to the vector $4 \hat{i}+7 \hat{j}-4 \hat{k}$, then the length of PM is
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2023 (12 May Shift 2)
Options:
  • A $\frac{16}{3}$
  • B $\frac{18}{5}$
  • C $\frac{22}{9}$
  • D $\frac{28}{9}$
Solution:
2260 Upvotes Verified Answer
The correct answer is: $\frac{28}{9}$


Equation of plane passing through $A(3,-2,1)$ and perpendicular to $4 \hat{i}+7 \hat{j}-4 \hat{k}$ is
$$
\begin{aligned}
& 4(x-3)+7(y+2)-4(z-1)=0 \\
& \Rightarrow 4 x+7 y-4 z+6=0
\end{aligned}
$$
Now, $\frac{\alpha-1}{4}=\frac{\beta-2}{7}=\frac{\gamma+1}{-4}=\frac{-1(4+14+4+6)}{4^2+7^2+4^2}$
$$
\Rightarrow \frac{\alpha-1}{4}=\frac{\beta-2}{7}=\frac{\gamma+1}{-4}=\frac{-28}{81}
$$
$\begin{aligned} & P M=\sqrt{(\alpha-1)^2+(\beta-2)^2+(\gamma+1)^2} \\ & =\sqrt{4^2\left(\frac{-28}{81}\right)^2+7^2\left(\frac{-28}{81}\right)^2+(-4)^2\left(\frac{-28}{81}\right)^2} \\ & =\frac{28}{81} \sqrt{4^2+7^2+4^2}=\frac{28}{81} \times 9=\frac{28}{9} .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.